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ABSTRACT: Range-oversampling processing is a technique that can be used to lower the variance of radar-variable

estimates, reduce radar update times, or a mixture of both. There are two main assumptions for using range-oversampling

processing: accurate knowledge of the range correlation and uniform reflectivity in the radar resolution volume. The first

assumption has been addressed in previous research; this work focuses on the uniform reflectivity assumption. Earlier

research shows that significant reflectivity gradients can occur in storms; we utilized those results to develop realistic

simulations of radar returns that include effects of reflectivity gradients in range. An important consideration when using

range-oversampling processing is the resulting change in the range weighting function. The range weighting function can

change for different types of range-oversampling processing, and some techniques, such as adaptive pseudowhitening, can

lead to different range weighting functions at each range gate. To quantify the possible effects of differing range weighting

functions in the presence of reflectivity gradients, we developed simulations to examine varying types of range-oversampling

processing with two receiver filters: a matched receiver filter and a wider-bandwidth receiver filter (as recommended for use

with range oversampling). Simulation results show that differences in range weighting functions are the only contributor to

differences in radar reflectivity measurements. Results from real weather data demonstrate that the reflectivity gradients

that occur in typical severe storms do not cause significant changes in reflectivity measurements and that the benefits from

range-oversampling processing outweigh the possible isolated effects from large reflectivity gradients.

KEYWORDS: Radars/radar observations; Weather radar signal processing; Quality assurance/control

1. Introduction

On weather radars, range-oversampling processing can be

used to provide radar data with faster updates and/or reduced

variance (Torres and Zrnić 2003). For example, it has been

used to achieve faster updates on the National Weather Radar

Testbed phased-array radar (Curtis and Torres 2011) and to

improve estimates of the polarimetric variables using data

from the National Severe Storms Laboratory’s KOUN re-

search radar (Curtis and Torres 2014). In a nutshell, over-

sampling in range at a rate that is L times faster than the

inverse of the transmitter pulse width results in received

baseband complex samples [commonly referred to as the in-

phase and quadrature-phase (IQ) samples] that are correlated

in range. Traditionally, a wider-bandwidth receiver filter (L

times wider than a conventional matched filter) has been used,

but a conventional matched filter can also be utilized effec-

tively for range-oversampling processing. Details about both

approaches can be found in Torres and Curtis (2020). After

the receiver filter is applied, a given set ofL samples in range

can be decorrelated using a linear transformation; the re-

sulting transformed IQ samples are then used to estimate

sample-time correlations for each of the L oversampled

gates. Next, these L correlation estimates can be averaged,

and the result is used to obtain radar variables with reduced

variance. At high signal-to-noise ratios (SNR), the variance

is reduced by a factor of L relative to conventional sampling

and processing (Torres and Zrnić 2003). It is important to

note that collecting L times more samples via range over-

sampling does not result in longer dwell times. That is, rel-

ative to conventional sampling and processing, the use of

range-oversampling processing with the same dwell times

results in radar data with reduced variance. Alternatively,

shorter dwell times can be used to obtain radar data with the

same variance. Thus, by changing the dwell times, a trade-

off can be found between faster updates and reduced vari-

ance of radar-variable estimates.

Range-oversampling processing can be implemented adap-

tively to ensure that the variance of a given radar-variable

estimate is minimized for particular weather signal character-

istics (Curtis and Torres 2011, 2014). This is important because

the application of the linear transformation may increase the

noise power; thus, the adaptive implementation finds the best

trade-off between noise enhancement and variance reduction.

Thus, at low SNRs, the linear transformation obtained by the

adaptive algorithm approaches a conventional matched filter

and results in little-to-no variance reduction. At high SNRs, the

linear transformation approaches a whitening transformation

(complete decorrelation) and results in a reduction of variance

by a factor of L. There are two main assumptions for using

range-oversampling processing: accurate knowledge of the

range correlation of IQ samples and uniform reflectivity in

the radar resolution volume.We have previously addressed the

importance of accurately measuring (or knowing) the range

correlation of IQ samples and quantified the impacts of using a

mismatched range correlation in the performance of range-

oversampling processing (Torres and Curtis 2012). The main

drawbacks of adaptive range-oversampling processing are in-

creased computational complexity and some loss in rangeCorresponding author: Christopher Curtis, chris.curtis@noaa.gov
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resolution. The trade-offs between variance reduction and

range resolution have been explored in greater detail in Torres

and Curtis (2015). In this paper, we explore the effects of using

range-oversampling processing when the reflectivity is not

uniform in the radar resolution volume. In other words, we

study the effects of reflectivity gradients on the performance of

range-oversampling processing.

Reflectivity is the radar term for the backscattering cross

section per unit volume (Doviak and Zrnić 1993); it depends

on the type, size, shape, aspect, and number of hydrome-

teors in the radar resolution volume. In general, the hy-

drometeor characteristics change from one location to

another, so the reflectivity also changes in all radar spatial

dimensions: azimuth, elevation, and range. A change of

reflectivity in one or more dimensions creates a nonzero

reflectivity gradient. In this work, we focus on reflectivity

gradients in the range dimension because they have the

potential to affect the implementation and performance of

range-oversampling processing. For simplicity, we use the

term ‘‘reflectivity gradient’’ to refer to the magnitude of the

projection of the reflectivity gradient vector in the range

dimension.

In the early years of weather radar, reflectivity gradients

were studied to better understand biases in reflectivity esti-

mates from using different types of radar receivers. We can

take advantage of that research to help focus our analyses on

the type and range of reflectivity gradients that may be real-

istically present when sampling different storm types. For

example, Rogers (1971) stated that ‘‘reflectivity gradients

exceeding 20 dB km21 are not uncommon in echoes from

stratiform or convective rain’’; however, they did not discuss

the frequency of occurrence of these ‘‘not uncommon’’ gra-

dients. One study from Mueller (1977) based on severe

thunderstorms found that ‘‘gradients as large as 50 dB km21

occur,’’ but the study also showed that ‘‘over 80% of all ob-

servations occurred with the absolute magnitude of the gra-

dient less than 12 dB km21’’ and that ‘‘some 50–60% occurred

with gradients less than 6 dB km21.’’ This tells us that whereas

larger reflectivity gradients do occur, the vast majority are

below 20 dB km21. Another study from a summer hailstorm

found ‘‘gradients from 0–30 dB km21 with a few around 35 dB

km21’’ (Scarchilli et al. 1986). As far as the nature of the

gradients, they also reported that ‘‘reflectivity expressed in

dBZ varies linearly in space.’’ In more recent research,

Kurdzo et al. (2014) show an observation of a ‘‘convective cell

with a strong reflectivity gradient’’ of 45 dB km21. For this

study, we chose to examine linear dBZ gradients from 0 to

50 dB km21.

The presence of significant reflectivity gradients reported

in the literature confirms that, in practice, the uniform

reflectivity assumption for range-oversampling processing

is often violated. Thus, it is important to quantify the im-

pacts of reflectivity gradients on range-oversampling pro-

cessing performance. In section 2, we examine the effects of

reflectivity gradients on radar reflectivity measurements.

This leads to the development of simulations that are used

to systematically study the impacts of reflectivity gradients

on range-oversampling processing in section 3. Section 4

looks at the impacts on real data in light of simulation re-

sults, and section 5 summarizes our results and conclusions.

2. Effects of reflectivity gradients on radar
reflectivity measurements

To better understand the effects of reflectivity gradients, it is

useful to look at the contributions to the received radar signals

from individual hydrometeors. The two-way effective antenna

radiation pattern weights contributions from individual hy-

drometeors based on their azimuth and elevation position with

respect to the direction of the radar beam. Our focus is on the

range dimension, where the range weighting function (RWF)

weights contributions from individual hydrometeors based on

their range location with respect to the center of the resolution

volume. The radar resolution volume is conventionally deter-

mined by contours corresponding to the 6-dB width of the two-

way effective antenna radiation pattern and the 6-dB width of

the RWF (Doviak and Zrnić 1993).

In simplified versions of the weather radar equation, the

reflectivity is often assumed to be constant and is removed

from the integrals that represent the spatial weighting. An

example of this type of simplified radar equation is
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In this equation, P is the average received signal power cor-

responding to the radar resolution volume centered at r0, u0,

and f0 in spherical coordinates; C is a system constant that

includes the transmit peak power, the antenna gain, the radar

wavelength, and system and propagation losses; h(r0, u0, f0) is

the radar reflectivity at the center of the resolution volume;WS

is the RWF centered at r0; and f 4 is the two-way effective an-

tenna radiation pattern centered at (u0, f0). In simpler versions

of the radar equation like Eq. (1), we cannot account for the

impacts that the RWF and the antenna radiation pattern can

have on radar measurements in the presence of reflectivity

gradients. A more accurate version of the radar equation is

given by
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where the reflectivity is inside the integrals because it varies

as a function of r, u, and f. This formulation of the radar

equation allows us to consider the effects of reflectivity gradi-

ents in all dimensions. In this work, we focus on the effects of

gradients in the range dimension and seek to understand how

different RWFs can result in different radar measurements

when the reflectivity is not constant.

Even with conventional sampling (i.e., no range over-

sampling and a receiver matched filter) and processing, the

presence of reflectivity gradients can impact the interpretation

of radar data, where the common assumption is that each
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observation (i.e., each radar-variable estimate for a given range

bin) relates to average properties of all the hydrometeors in the

radar resolution volumewhose location in range coincides with

the peak of the RWF (Johnston et al. 2002). When the re-

flectivity is not constant, data may be assigned to the incorrect

range, and radar observations may reflect the properties of

only a fraction of the hydrometeors in the resolution volume.

This problem gets compounded when the RWF is not the same

for all range bins.

In general, the RWF is determined by the shape of the

transmitted pulse, the receiver impulse response, and the ef-

fective linear transformation from range-oversampling pro-

cessing. Since the transmitted pulse and receiver impulse

response are normally fixed, our focus will be on the effects

from range-oversampling processing, which produces different

RWFs when compared with conventional matched-filter pro-

cessing (Torres and Curtis 2012). Moreover, for adaptive

pseudowhitening (Curtis and Torres 2011, 2014, 2017; Torres

and Curtis 2020), the RWF can potentially change at every

range location. This is because adaptive pseudowhitening

uses signal characteristics to find a single parameter, p, that

determines the appropriate linear transformation. This linear

transformation is calculated to minimize the variance of

radar-variable estimates and also determines the RWFs

(Torres and Curtis 2012). As p varies from 0 to 1, the pseu-

dowhitening linear transformation varies from matched-

filter-like to a whitening transformation. Because different

linear transformations result in different RWFs, as p changes,

the RWF also changes. Figure 1 shows examples of different

RWFs for a few values of p using the Weather Surveillance

Radar-1988 Doppler (WSR-88D) transmit pulse with a receiver

bandwidth that is L times wider than the bandwidth of the pulse

(typically t21). TheRWF corresponding to p5 0 is the closest to

the RWF corresponding to conventional sampling and pro-

cessing using a matched receiver filter. A matched receiver filter

minimizes the variance at low SNRs, but as the SNR increases,

we can achieve a lower variance of estimates by decorrelating

the samples in range. In general, as p increases, the decorrelation

increases, which also leads to an increase in the 6-dBwidth of the

RWF. Hence, the whitening transformation (p 5 1) results in

the widest RWF.

In thepresenceof reflectivity gradients, radarmeasurements can

change in different ways for differentRWFs. The next sections will

explore by howmuch radar measurements change in the presence

of reflectivity gradients when using range-oversampling processing

in comparison with conventional processing.

3. Simulations and analysis

In this section, we use simulations to systematically study the

impact of reflectivity gradients on the performance of range-

oversampling processing with two different receiver filters. In

modern radar receivers, received complex signals are down-

converted (first stage) and digitized at the radar’s intermediate

frequency (IF), and the receiver filter and second down-

conversion stage (to baseband) are implemented digitally.

Thus, to include the effects of the receiver filter, our simula-

tions start with a set of radially aligned independent scattering

centers with range spacing Dr given by the IF. That is, Dr 5
c(2fIF)

21, where c is the speed of light and fIF is the IF. In this

simulation, each scattering center represents the combined

contributions of all scatterers in a ‘‘slab’’ of space with di-

mensions given by the extent of the radar resolution volume in

azimuth and elevation and the range sampling spacing in range.

A flow diagram is shown in Fig. 2.

For each scattering center, we use the procedure in Curtis

(2018) to simulate M samples of baseband IQ signals with

sample-time spacing given by the pulse repetition time (PRT)

and with arbitrary signal characteristics defined by the mean

signal power S, the mean Doppler velocity y, the spectrum

width sy, and the SNR. For this work, and without loss of

generality, we adopted the following signal characteristics: S5
1, y 5 0m s21, sy 5 2m s21, and SNR 5 30 dB. We also

adopted the acquisition parameters of the lowest elevation

angle of the WSR-88D volume coverage pattern 12. That is,

the maximum unambiguous velocity is ya 5 8.5 m s21, and

the number of samples per dwell is M 5 15. The IF is se-

lected so that, after decimation to baseband, the resulting

range-sampling spacing is 50 m, which corresponds to a

range-oversampling factor of L 5 5 for the conventional

WSR-88D radar-data range spacing of 250 m. To match a

typical configuration of the digital receiver in theWSR-88D,

we adopted a base-band decimation factor D 5 32, which

results in fIF 5 DLc/(500 m) 5 95.92MHz and Dr ’ 1.56 m.

Next, the scattering-center IQ signals are manipulated along

the range dimension to impose the desired reflectivity gradi-

ents and to simulate the effects of the transmitted pulse, the

receiver filter, and the range-time signal processing. To obtain a

single set of reflectivity estimates after signal processing, we

FIG. 1. Examples of area-normalized RWFs for conventional

processing using a matched receiver filter (CP) and range-

oversampling processing using a wide-bandwidth receiver filter

(ROP) and select linear transformations corresponding to values of

p from 0 (matched filter-like transformation) to 1 (whitening

transformation). The range is relative to the center of the radar

resolution volume.
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simulateG5 (L2 1)D1 F1Np 2 1 scattering centers, where

F is the length of the finite-impulse-response (FIR) receiver

filter, and Np is the number of samples of the transmitted pulse

when sampled at the IF. To simplify the notation and without

loss of generality, we assume thatG is odd. First, rangeweightsw

are applied to the G scattering-center IQ signals to simulate

gradients of reflectivity that are linear in decibel units. That is,

w(lDr) 5 10[l2(G11)/2]Drj=Zj/20, where l 5 0, 1, . . . , G 2 1, and

j$Zj is the magnitude of the reflectivity gradient (dB km21).

These range weights are chosen such that the one for the scat-

tering center in the middle of the set is always 1 (or 0 dB).

Second, we convolve the resulting signals with the transmitted

pulse ptx, which in our case approximates the WSR-88D trans-

mitted pulse sampled at the IF (Np 5 181), and this result is

convolved with the receiver-filter impulse response h. The re-

ceiver filter is a digital FIR filter that is created using the window

method (as on the WSR-88D) and is designed to have either a

matched bandwidth (B6 5 t21) or an L-times-wider bandwidth

(B6 5 Lt21) (Torres and Curtis 2020). In both cases, it has F5
201 taps. With these settings, G, the number of scattering cen-

ters, is 509. After the two convolution operations, we obtain

(L 2 1)D 1 1 sets of samples along the range dimension. We

emphasize that all operations are performed along the range

dimension, so the same signal manipulations are repeated at all

M sample times. Next, we decimate the signals to baseband by a

factor ofD to obtainL sets ofM-sample IQ signals; these are the

range-oversampled inputs to the signal processor V, where V is

an L-by-M matrix with complex (IQ) entries. Last, using con-

ventional or range-oversampling processing, we obtain a re-

flectivity estimate.

With conventional sampling and processing, we use a re-

ceiver filter with a matched 6-dB bandwidth (i.e., B6t 5 1) hmf,

and the range-oversampled signals are decimated by a factor

of L (i.e., we retain only the first row of V) prior to estimating

the signal power in the conventional manner. With range-

oversampling processing, we use either a receiver matched

FIG. 2. Simulation flowchart. Inputs to each processing block are listed to the left of the block. The notation f() is

loosely used to make the dependency of inputs on basic simulation parameters explicit. The dimensionality of

nonscalar inputs is indicated in parentheses. The dimensionalities of outputs are listed to the right of each pro-

cessing block. The total number of scattering centers isG5 (L2 1)D1 F1Np 2 1, whereNp is the length of the

transmit pulse, F is the length of the receiver impulse response, D is the decimation factor, and L is the range

oversampling factor; M is the number of samples in the dwell. An asterisk next to an operation is used to indicate

that the same operation is performed on each row of the input matrix. Separate processing branches are needed for

conventional processing (right branch) and ROP (left branch). Each simulation run produces a single signal-power

estimate. For this work, the simulation is repeated for 20 000 realizations.
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filter (B6t5 1) as recommended in Torres andCurtis (2020) for

minimizing receiver changes or one with L-times-wider band-

width (B6t 5 5) as was originally recommended to accom-

modate range oversampled signals. For each receiver filter, we

apply two processing transformations T: a matched-filter-like

transformation (with transformation parameter p5 0) and a

whitening transformation (p 5 1). These correspond to the

extreme cases for adaptive pseudowhitening (Curtis and

Torres 2011, 2014) and define the range of performance that

can be expected when p is chosen adaptively in the interval

from 0 to 1. The generation of linear transformations for range-

oversampling processing requires a priori knowledge of the

range correlation matrix of the weather signals CV. We can

obtain the required range correlation by computing the auto-

correlation of the modified pulse, which is obtained as the

convolution of the known transmitted pulse and receiver-filter

impulse response. The processing entails applying the trans-

formation to the input range-oversampled signals as X 5 TV,

computing mean signal powers for each of the L sets of IQ

samples, averaging each set ofL signal powers, and using these

to estimate the signal power in the conventional manner. For

more details about range-oversampling processing, the reader

is referred to Torres and Curtis (2020).

The RWF depends on the transmitted pulse, the receiver

impulse response, and, as mentioned in the previous section,

the range-oversampling processing transformation (defined by

p for adaptive pseudowhitening). Figure 3 shows the RWF for

conventional processing (CP), and for range-oversampling

processing (ROP) with four combinations using one of the

two receiver filters (B6t 5 1 or 5) with one of the two pro-

cessing transformations (p5 0 or 1). It can be seen that, for the

same processing transformation, the use of a receiver matched

filter results in wider RWFs relative to the wide-bandwidth

receiver filter. Similarly, for the same receiver filter, the use of a

whitening transformation results in wider RWFs relative to

using a matched-filter-like transformation. In general, the

width of the RWF is proportional to the degree of decorrela-

tion needed, which is a function of the correlation of the range

oversampled data before and after the linear transformation.

The correlation before the linear transformation is dictated by

the bandwidth of the receiver filter, with narrower receiver

filters resulting in more correlation. The correlation after the

linear transformation is a function of p, with higher values of p

resulting in more decorrelation. Intuitively, the results in Fig. 3

make sense because achieving higher degrees of decorrelation

requires the use of more ‘‘information’’ or, equivalently, a

wider RWF.

Figure 4 shows the change in the mean of reflectivity esti-

mates when using range-oversampling processing with respect

to using conventional processing as a function of reflectivity

gradients for the four combinations of receiver filter and

transformation described above. The solid curves were ob-

tained from simulations, which include all sampling and pro-

cessing effects: the transmit pulse, the receiver filter, the

baseband downconversion, and the range-oversampling pro-

cessing. In this case, the results were obtained as averages of

Monte Carlo simulations, by which the simulation process

described above (and shown in Fig. 2) was repeated for R 5
20 000 realizations (a new realization of IQ signals corre-

sponding to the scattering centers in the first step of the sim-

ulation are produced on each iteration). The circle markers

were obtained by summing the product of the RWFs (corre-

sponding to the four combinations of receiver filter and

FIG. 3. Normalized RWFs for CP and for ROP with the four

combinations of receiver filter (B6t 5 1 or 5) and processing

transformation (p 5 0 or 1). The range is relative to the center of

the radar resolution volume.

FIG. 4. Change in the mean of reflectivity estimates when using

range-oversampling processing with respect to using conventional

processing as a function of reflectivity gradients. The solid curves

were obtained from simulations and correspond to different com-

binations of receiver filter (B6t 5 1 or 5) and processing transfor-

mation (p 5 0 or 1). The circle markers correspond to the

‘‘expected’’ changes (based only on the associated RWF) of the

mean of reflectivity estimates for the same cases.

AUGUST 2021 CURT I S AND TORRES 1347

Brought to you by U.S. Department Of Commerce, Boulder Labs Library | Unauthenticated | Downloaded 12/15/21 08:45 PM UTC



transformation) with the range profiles of scattering-center

signal powers (corresponding to all reflectivity gradients from 0

to 50 dB km21 in steps of 2 dB km21). This process produces

the expected signal-power measurements for each case (i.e.,

each combination of receiver filter and transformation). We

use the term ‘‘expected’’ here because this computation only

takes into account the transmit pulse and the receiver filter,

effectively ignoring any artifacts that might be introduced by

baseband downconversion and range-oversampling processing

(e.g., due to mismatches between the true and measured signal

and noise range correlations).

Because the expected results capture only RWF effects and

the simulation results capture all processing stages, including

filtering, downconversion, and range-oversampling processing,

the remarkable agreement between the expected and sim-

ulated results indicates that the measurement differences

observed in the presence of reflectivity gradients come ex-

clusively from the RWFs. This is important because it im-

plies, for example, that the range correlation is not affected by

reflectivity gradients. In other words, we should expect no

biases in radar reflectivity measurements from correlation-

mismatch effects if the range correlation matrix is known (or

measured accurately) for the no-gradient case. As expected, in

the presence of reflectivity gradients, range-oversampling

processing leads to different measurements of reflectivity

when compared with conventional processing. This is because

range-oversampling processing results in a different RWF,

which is a function of the normalized receiver-filter bandwidth

B6t and the range-oversampling transformation p. The pre-

dicted measurement differences are larger for larger re-

flectivity gradients and also when the input IQ data are more

correlated in range (e.g., when using a receiver matched filter).

Figure 5 shows the change in standard deviation of reflectivity

estimates for the same cases as Fig. 4 using simulations. The

results are not surprising: the standard deviation of reflectivity

estimates obtained with range-oversampling processing and a

whitening transformation is significantly lower than that of

estimates obtained with conventional processing.

Taking into consideration their frequency of occurrence, we

can infer that, in practice, reflectivity gradients should not

significantly affect the performance of range-oversampling

processing. According to Mueller (1977), reflectivity gradi-

ents of 12 dB km21 or less make up over 80% of measured

gradients, with most of them being less than 6 dBkm21. For

gradients of 12 dB km21, the reflectivity measurement differ-

ences between conventional and range-oversampling process-

ing are between 0.03 and 0.2 dB for the wide-bandwidth

receiver filter and between 0.06 and 0.5 dB for the matched

receiver filter. Very few cases of gradients up to 35 dB km21

have been reported (Sirmans and Doviak 1973; Scarchilli et al.

1986). For these, the measurement differences are between 0.2

and 1.4 dB for the wide-bandwidth receiver filter and between

0.4 and 3.2 dB for the matched receiver filter. In these extreme

situations, the large measurement differences experienced

with the use of a whitening transformation are not negligible.

However, the impact of significant measurement differences is

isolated, and these unlikely circumstances would need to be

weighed against the wide-ranging improvements in standard

deviation that can be achieved when using range-oversampling

processing. It is difficult to know for sure how a small number

of extreme gradients could affect meteorologists’ interpreta-

tion of the data, but an initial approach is to use real data to

explore the trade-off between standard deviation improve-

ments and reflectivity gradient impacts.

4. Real data analysis

We have seen in section 3 that, for large reflectivity gradi-

ents, the change in the measured radar reflectivity can be sig-

nificant when using range-oversampling processing with a

whitening transformation. We also know from previous

studies that the percentage of radar bins with large reflectivity

gradients is relatively small. The purpose of this section is to

explore the impacts of reflectivity gradients when using

range-oversampling processing with real data.

We selected a data case from 8 April 2012 collected with the

S-band KOUN radar in Norman, Oklahoma, at approximately

2336 UTC. The data were collected using an oversampling

factor ofL5 5 and a wide-bandwidth receiver filter withB6t5
5. In addition, M 5 17 pulses were collected with a PRT 5
3.1ms (ya 5 8.9m s21) at an elevation of 0.58 and with azi-

muthal sampling spacing of 18. The case includes severe con-

vective storms with large reflectivity gradients in range (Fig. 6a).

Three different types of processing were applied to the collected

data: conventional processing using a digital matched filter to

emulate the matched receiver filter from section 3, range-

oversampling processing after the application of that same dig-

ital matched filter, and range-oversampling processing after the

application of a wide-bandwidth receiver filter. To emulate the

B6t 5 1 receiver filter, the digital matched filter was applied to

FIG. 5. Improvement in the standard deviation of reflectivity

estimates when using range-oversampling processing with respect

to use of conventional processing as a function of reflectivity gra-

dients. The curves were obtained from simulations and correspond

to the same combinations of receiver filters and processing trans-

formations as in Figs. 3 and 4.
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the range oversampled data. Adaptive pseudowhitening was

utilized for both types of range-oversampling processing. For the

B6t5 5 receiver filter, the range correlation was computed from

the data as in Curtis and Torres (2013), and the noise was as-

sumed to be white based on the wider receiver bandwidth. For

the B6t 5 1 case, we attempted to use the same method to

compute the range correlation after the digital matched filter

was applied but determined that the obtained reflectivity esti-

mates were unexpectedly biased when using that approach.

Further analysis revealed that, when using a matched received

filter, range-oversampling processing is sensitive to even the

smallest range-correlation mismatches that can arise from

measuring the range correlation directly from the data. To

mitigate this issue, we computed the range correlation by

theoretically combining the effects of the digital matched

filter with the range correlation measurement from the

wide-bandwidth receiver filter. Because of the higher sen-

sitivity to small errors in range correlation measurements,

we recommend that another method is used to accurately

measure the range autocorrelation when using a matched

receiver filter. Other possible methods include directly

measuring the modified pulse from either a strong point target

or by directly injecting a delayed version of the transmitted

pulse into the radar receiver. For theB6t5 1 receiver filter, we

also need the noise correlation, which was computed from the

digital matched filter and was utilized as described in Torres

and Curtis (2020). The noise power was measured using the

radial-by-radial noise estimator described in Ivić et al. (2013).

FIG. 6. (a) Reference reflectivity field and zoomed-in reflectivity fields corresponding to (b) conventional pro-

cessing and (c) adaptive-pseudowhitening processing using a matched receiver filter and (d) a wide-bandwidth

receiver filter. The range-oversampled data were collected with the KOUN radar on 2336 UTC 8 Apr 2012 at an

elevation of 0.58 and with azimuthal sampling spacing of 18. The black contour in (a) encloses the data used in Fig. 7;

Fig. 9 includes data from three additional cases. The black dotted lines in (b)–(d) correspond to the radial in Fig. 8.
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Figure 6 shows the results for all three receiver-filter and

processing combinations using the real data. Figure 6b shows

the conventional processing with a zoom level clearly showing

the reflectivity gradients in range for the convective storm.

Figure 6c illustrates the effects of applying adaptive pseu-

dowhitening to the digitally matched-filtered data. Figure 6d

shows the effects of using adaptive pseudowhitening on the

data as originally collected (i.e., with the wide-bandwidth re-

ceiver filter). Based on the simulations, the B6t 5 1 receiver

filter with range-oversampling processing (Fig. 6c) should lead

to the largest changes in radar reflectivity measurements (rel-

ative to conventional processing) in the presence of strong

reflectivity gradients. Qualitatively, the data appear to be un-

biased, and the effects of gradients do not seem to be signifi-

cant. The measured reflectivity values appear to be smoother,

which is consistent with the reduced variance from range-

oversampling processing. Recall that, when using adaptive

pseudowhitening, range bins with low SNR near the fringes of

storms lead to values of p close to 0, and range bins with high

SNR lead to values closer to 1. Even in the high-SNR areas

with strong gradients, the radar reflectivity measurements with

range-oversampling processing do not depart significantly

from those obtained with conventional processing. For the

B6t 5 5 receiver filter (Fig. 6d), these data are very similar to

the data fromFig. 6c. As expected, the reflectivity estimates are

smoother as a function of range than when using conventional

processing (Fig. 6a) and appear to be unbiased.

Figure 7 shows histograms of measured radar reflectivity

differences between the range-oversampling-processing data

and the conventional-processing data from range gates at the

same locations focused on a sector with weather returns

(azimuths 1208–3008 and ranges 40–465 km) and bins with

SNR . 10 dB. The histograms capture the variability in these

gate-to-gate differences when using different combinations of

receiver filters and processing. The histograms are nearly the

same for both cases of adaptive pseudowhitening processing;

this supports our assertion that reflectivity gradients do not

have a significant additional effect on reflectivity measure-

ments when using range-oversampling processing. Based on

the simulations from section 3, if reflectivity gradients were a

major factor, we would have expected the differences when

using theB6t5 1 receiver filter to be greater than for theB6t5
5 one. The mean values for the differences are 0.153 dB for the

B6t5 1 case and 0.045 dB for theB6t5 5 case; this could be an

effect of the reflectivity gradients since the means are positive

and larger for the matched-filter-receiver case, but given the

large number of range gates (over 20 000) and the fact that

reflectivity gradients are not ubiquitous, these differences

could also be due to a small mismatch in the range correlation

and/or statistical variability in the data. At least in this case, the

benefits of range-oversampling processing in terms of reducing

the variance of estimates outweigh any minor reflectivity

differences.

Figure 8 illustrates the differences in processing for a par-

ticular radial (azimuth 2488) that has significant reflectivity

gradients. The measured radar reflectivities are shown for

conventional processing and both cases of adaptive pseudow-

hitening processing. For both cases of adaptive pseudowhitening

processing, the results are similar and have less variability than the

conventional processing case, as expected. Adaptive pseudow-

hitening does not seem to cause substantial increases in the re-

flectivity values, even in the case of strong reflectivity gradients.

This is consistentwith the results shown inFig. 6. It also seems that

any increases in reflectivity from range-oversampling processing

would be small relative to the spatial variability of the data ob-

tained with conventional processing, which has larger variance.

FIG. 7. Histograms of reflectivity differences between the

adaptive-pseudowhitening processing (APTB) data and conven-

tional processing data (shown in Fig. 6) from range gates at the

same locations. Only range bins between 1208 and 3008 in azimuth

and 40 and 465 km in range with SNR at or above 10 dB are in-

cluded; these 14 500 bins correspond to the most significant por-

tions of the storms where the largest reflectivity gradients are

observed.

FIG. 8. Range profile of reflectivity estimates for the data in Fig. 6

at the 2488 azimuth using conventional processing and both cases of

adaptive-pseudowhitening processing.
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Some of these differences in spatial variability are quantified and

discussed in more detail in Curtis and Torres (2014).

Figure 9 shows average differences in measured radar re-

flectivities between both cases of range-oversampling pro-

cessing and conventional processing as a function of reflectivity

gradient for the data in Fig. 7 plus three additional cases to

increase the range of gradients. The reflectivity gradients in the

data under analysis span awide range from 0 dBkm21 to values

close to 50 dB km21 with a total of about 65 000 data points.

Despite the limited number of weather scenarios, this large

number of points with a wide diversity of gradients are suffi-

cient to validate the simulation results. The reflectivity gradi-

ents were estimated from the data that were computed using

adaptive pseudowhitening processing and the wide-bandwidth

receiver filter, which represent the best compromise between

precision and range resolution. We excluded gates with weak

returns (SNR, 10 dB) as in Fig. 7. The reflectivity differences

were binned according to the measured gradient in 5 dB km21

intervals (i.e., 0–5, 5–10, . . . , 45–50 dB km21), and the average

difference for each bin was then obtained. We calculated the

average difference to minimize the statistical variability from

the estimates. From these averages, we subtracted the corre-

sponding systematic bias (similar to the bias identified in Fig. 7

but including all datasets). The black dotted curve shows the

number of gates in each 5 dB km21 gradient bin. The simu-

lation results in Fig. 4 are also included as a reference, where

the shaded areas correspond to the full range of p values for

each receiver filter. Because the reflectivity estimates ob-

tained with adaptive pseudowhitening processing may

correspond to p values between 0 and 1, the curves from Fig. 4

represent lower and upper bounds for the curves obtained

from the real data. It is important to note that the curves

obtained from the real data may not perfectly agree with our

simulation results due to 1) the statistical variability in the

measured reflectivity data, 2) the effects of the RWF on the

true reflectivity gradient, 3) the finite number of gates in each

5 dB km21 gradient bin (which drastically decreases as the

gradients increase), 4) the binning process, and 5) the vari-

ability of p (because the SNR of the data under analysis is

always 10 dB or more, most of the values of p should be close

to 1). Nevertheless, the curves from the real data exhibit the

expected behavior: larger measured reflectivity changes from

range-oversampling processing for larger reflectivity gradi-

ents and larger reflectivity changes from range-oversampling

processing when using a matched receiver filter. Also, the

measurements fall within their predicted bounds (i.e., the

respective shaded areas obtained from simulations). Overall,

the results from this real data case support the conclusion that

range-oversampling processing reduces the variability of the

radar data without causing significant differences in radar

reflectivity measurements in the presence of the types of re-

flectivity gradients found in practice.

5. Conclusions

Range oversampling processing leads to increased compu-

tational complexity and some loss of range resolution. Earlier

work has shown that this loss in range resolution can be offset

by a decrease in the variance of radar-variable estimates (Torres

andCurtis 2015). The focus of this paper is to examine the effects

of reflectivity gradients when using range-oversampling pro-

cessing. This is important because range-oversampling pro-

cessing techniques such as adaptive pseudowhitening were

developed using a uniform reflectivity assumption. However,

we know from earlier studies that significant reflectivity gradi-

ents occur in storms with some gradients above 30dBkm21 and

possibly even higher. At the same time, the research of re-

flectivity gradients in storms also shows that the vast majority

of gradients are less than 12 dB km21. After looking at pos-

sible effects from reflectivity gradients, we found that the only

significant effect comes from changes to the range weighting

function. These changes, which can occur on a gate-by-gate

basis, cause differences in reflectivity measurements in the

presence of gradients.

To quantify these effects, we developed simulations that

used receiver filters similar to those implemented currently on

theWSR-88D.We studied gradients from 0 to 50 dBkm21 that

were linear in the reflectivity domain, which is consistent with

earlier research. These simulations showed that the differences

in reflectivity measurements increase as the gradients increase

in magnitude. The differences are larger for whitening than for

matched-filter processing. The differences are also larger for

narrower matched-filter-like receiver filters than for wider re-

ceiver filters. We also found that reflectivity gradients can also

cause biases when measuring the range correlation matrix for

matched-filter-like receiver filters using our previously devel-

oped measuring technique (Curtis and Torres 2013). Because

FIG. 9. Average of change in measured radar reflectivities be-

tween range-oversampling processing and conventional processing

as a function of reflectivity gradient from data collected with the

KOUN radar. The blue curve corresponds to a matched receiver

filter, and the red curve corresponds to a wide-bandwidth receiver

filter (left axis). The black dotted curve shows the number of range

gates (logarithmic units) in each 5 dB km21 gradient bin (right

axis). The shaded areas correspond to the reflectivity differences

with respect to conventional processing obtained from simulations

(see Fig. 4) using a matched receiver filter (blue) and a wide-

bandwidth receiver filter (red) for all values of p between 0 and 1.
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these measurement biases can lead to significant reflectivity

biases, we recommend using an L-times-wider receiver filter

when using this real-time measurement technique. If a narrow,

matched filter is utilized, we recommend a different approach

for measuring the range correlation.

In addition to the theoretical simulations, we also examined

the effects on real data. As mentioned previously, the vast ma-

jority of gradients are less than 12dBkm21, and the qualitative

comparisons between conventional processing and adaptive

pseudowhitening processing did not show any significant dif-

ferences. We also analyzed real data with significant reflectivity

gradients in range, and we concluded that the measurement

differences from reflectivity gradients tend to be small relative to

the estimate variability for conventional processing. Overall, we

conclude that the widespread improvement in estimate standard

deviation from range-oversampling processing outweighs the

possible measurement differences in the presence of strong

gradients. These large gradients occur relatively infrequently

and should not significantly affect the performance of range-

oversampling processing.
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anonymous reviewers for providing comments to improve the

paper. Funding was provided by the NOAA/Office of Oceanic

and Atmospheric Research under NOAA–University of

Oklahoma Cooperative Agreement NA11OAR4320072,

U.S. Department of Commerce.

REFERENCES

Curtis, C., 2018: Weather radar time series simulation: Improving

accuracy and performance. J. Atmos. Oceanic Technol., 35,
2169–2187, https://doi.org/10.1175/JTECH-D-17-0215.1.

——, and S. Torres, 2011: Adaptive range oversampling to achieve

faster scanning on the National Weather Radar Testbed

phased-array radar. J. Atmos. Oceanic Technol., 28, 1581–

1597, https://doi.org/10.1175/JTECH-D-10-05042.1.

——, and ——, 2013: Real-time measurement of the range corre-

lation for range oversampling processing. J. Atmos. Oceanic

Technol., 30, 2885–2895, https://doi.org/10.1175/JTECH-D-

13-00090.1.

——, and ——, 2014: Adaptive range oversampling to improve

estimates of polarimetric variables on weather radars.

J. Atmos. Oceanic Technol., 31, 1853–1866, https://doi.org/

10.1175/JTECH-D-13-00216.1.

——, and ——, 2017: Adaptive range oversampling processing for

nontraditional radar-variable estimators. J. Atmos. Oceanic

Technol., 34, 1607–1623, https://doi.org/10.1175/JTECH-D-

16-0051.1.
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Ivić, I. R., C. Curtis, and S. M. Torres, 2013: Radial-based noise

power estimation for weather radars. J. Atmos. Oceanic

Technol., 30, 2737–2753, https://doi.org/10.1175/JTECH-D-

13-00008.1.

Johnston,P.E.,L.M.Hartten,C.H.Love,D.A.Carter, andK.S.Gage,

2002: Range errors in wind profiling caused by strong reflectivity

gradients. J. Atmos. Oceanic Technol., 19, 934–953, https://doi.org/

10.1175/1520-0426(2002)019,0934:REIWPC.2.0.CO;2.

Kurdzo, J. M., B. L. Cheong, R. D. Palmer, G. Zhang, and J. B.

Meier, 2014: A pulse compression waveform for improved-

sensitivity weather radar observations. J. Atmos. Oceanic

Technol., 31, 2713–2731, https://doi.org/10.1175/JTECH-D-

13-00021.1.

Mueller, E. A., 1977: Statistics of high radar reflectivity gradients.

J. Appl. Meteor., 16, 511–513, https://doi.org/10.1175/1520-

0450(1977)016,0511:SOHRRG.2.0.CO;2.

Rogers, R. R., 1971: The effect of variable target reflectivity on

weather radar measurements. Quart. J. Roy. Meteor. Soc., 97,

154–167, https://doi.org/10.1002/qj.49709741203.

Scarchilli, G., E. Gorgucci, and R. Leonardi, 1986: Theory and

optimization of the excess bias measurement. J. Atmos.

Oceanic Technol., 3, 217–229, https://doi.org/10.1175/1520-

0426(1986)003,0217:TAOOTE.2.0.CO;2.

Sirmans, D., and R. J. Doviak, 1973: Meteorological radar signal in-

tensity estimation. NOAA Tech. Memo. ERL NSSL-64, 92 pp.
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